CMIP6 Simulations With the CMCC Earth System Model (CMCC‐ESM2)

نویسندگان

چکیده

This article introduces the second generation CMCC Earth System Model (CMCC-ESM2) that extends a number of marine and terrestrial biogeochemical processes with respect to its CMIP5 predecessor. In particular, land biogeochemistry was extended wider set carbon pools plant functional types, along prognostic representation nitrogen cycle. The ecosystem reshaped toward an intermediate complexity lower trophic level interactions, including interactive benthic compartment new formulation heterotrophic bacterial population. Details are provided on model setup implementation for different experiments performed as contribution sixth phase Coupled Intercomparison Project. CMCC-ESM2 shows equilibrium climate sensitivity 3.57°C transient response 1.97°C which close CMIP6 multi-model averages. evaluation coupled climate-carbon in historical period against available observational datasets show consistent both physical quantities. However, sink is found be weaker than current global estimates simulated primary production slightly below satellite-based average over recent decades. Future projections coherently prominent warming northern hemisphere intensified precipitations at high latitudes. expected ranges variability oceanic pH oxygen, well soil storage, compare favorably those assessed from other models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5)

[1] The NASA Global Modeling and Assimilation Office (GMAO) has developed a global non‐hydrostatic cloud‐ system resolving capability within the NASA Goddard Earth Observing System global atmospheric model version 5 (GEOS‐5). Using a non‐hydrostatic finite‐volume dynamical core coupled with advances in the moist physics and convective parameterization the model has been used to perform cloud‐sy...

متن کامل

Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

Investigating and evaluating physical-chemicalbiological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software...

متن کامل

The Community Earth System Model

The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemic...

متن کامل

The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system

Diagnostics of atmospheric momentum and energy transport are needed to investigate the origin of circulation biases in climate models and to understand the atmospheric response to natural and anthropogenic forcing. Model biases in atmospheric dynamics are one of the factors that increase uncertainty in projections of regional climate, precipitation and extreme events. Here we define requirement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advances in Modeling Earth Systems

سال: 2022

ISSN: ['1942-2466']

DOI: https://doi.org/10.1029/2021ms002814